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1. INTRODUCTION.

Using the theory of stochastic flows the integrand in a stochastic integral is identified.

After some rearrangement this integrand is itself written in terms of a martingale which

can be expressed as a stochastic integral, and by recursively repeating the representation a

homogeneous chaos expansion is obtained. Using the stochastic integral representation an

integration by parts formula is then derived. If the inverse of the Malliavin matrix M be-

longs to all the spaces LP (fl) we show a random variable has a smooth density. The difficult

questions concerning the relationship between H6rmander's conditions on the coefficient

vector fields and the integrability of M- are not discussed, but, at least for Markov flows,

the discussion below appears to be an elementary treatment of some ideas of the Malliavin

calculus. This paper was presented at the Workshop on Diffusion Approximations held

at the International Institute for Applied Systems Analysis, Laxenburg, Austria, in July

1987. A fuller treatment of the ideas given here can be found in Ill.

2. DYNAMICS.

Consider a stochastic differential system .5

dxf = Xo(t,xt)dt + X(t,zx)dw. (2.1)

Here x E Rd, 0< t < T and w = (w 1 ,. .. , w') is an m-dimensional Brownian motion on

(f), F, P). We shall suppose the coefficient vector fields X are smooth and have bounded

derivatives of all orders.

From results in (21, for example, it is known that for 0 < s < t < T and z, E Rd there

is a unique solution C,, (x,) of (2.1) with C,,,(x,) = x,. Furthermore, there is a version

of this solution which, almost surely, is smooth in x, E Rd.

If x 0 E Rd and x =O,(xO), because the solutions of (2.1) are unique:

C O,T (XO) &,T ( O,t(-TO))

&,T (2.2)

2
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Write Da for the Jacobian of the map x - a(x). Then, differentiating (2.2)

I DO,T = Dt,T DO,t. 1

Again, from 12] we know that D satisfies the equation

dD#*t - Dtdt + "~'Dt dw, (2.3)

with D,,, I, the d x d identity matrix.

Consider the matrix function Vat defined by the stochastic differential equation

dV,, -V, x-0 dt - V, aX. w 24
*1e ae (24

with V5,5  I. Here

0 0 .d ak
2a a1

Then, see (21, d(Va,tD8,t) =0 so

V~t =D-1

.'t.

3. MARTINGALE REPRESENTATION.

Suppose X0 E Rd is given. Consider a smooth, bounded function c on Rd and the

random variable C(6,T (X 0 )). Write {Ft) for the right continuous, complete filtration

generated by Ft afw s < t). Because x0 is known orx 5  s < t) C Ft and the process

(xt, wt) is Markov. Consider the martingale

M= E[c( Or (xo)) I FtI.

Then by the martingale representation result

Mt M0 + -y, (s) dw' (3.1)

3



for some predictable, square integrable process -y. However, because eo,t (xo) is Markov, ..J

writing x = (x0)

Mj = E[c( oT(Xo)) X]

= EIcCt,T (x)TM

= Elc(&t,T W) IFt .

= v(t,z).

By the chain rule C(&,T (W)) is differentiable in x. Consequently V (t, x) is differentiable

in x. By considering the backward equation for &,T (x) as in Kunita [3] we see V(t, x) is

differentiable in t. Therefore, applying the Ito differentiation rule to V(t,x) with x - p

co,t (Xo):

v(t,. o,,(xo)) = v(o,zo) + [ -( + LV) ds
I.Vo (t 6 ', dw.) 2V (0"")+a

+ o w (3.2)

Here dd Mad 0 m %"' \ 0

V O ~ _ i 3'k X X X

However, V(t,o,t (xo)) =M t so the decompositions (3.1) and (3.2) must be the same.

The bounded variation term in (3.2) is, therefore, zero, i.e.:

ov- + LV= 0

and (as is well known) V is the solution of the backward Kolmogorov equation with a final

condition

C(XT) V(T,XT).

Equating the martingale terms in (3.1) and (3.2)

Y1( W - . X1.
Ox
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Differentiating inside the expectation

a- E[cc(&,T(x))D,T IFt

by the chain rule,

- Efc (CoT(xo))DoT I Ft]Do, .

So

-y,(t) = E[ce (o,T(Xo))Do,T I F]D-' X i  (3.3)

and

Mt EIc( o,T(o))] +(a E[cC( O,T(XO))DO,T IF.]DJX (s 0 ,.(x0 ))dw:. (3.4)

REMARKS 3.1. Note the term E[c (Co,T (Xo))Do,T I F, is itself a martingale. If

the representation is written down at t = T

MT =C(O,T (X0)) E[c( oT(xO))] + E[cf (eO,T (xo))Do,T I F. lDoj, Xidw'. (3.5)

Also, the representation (3.4) holds for vector (or matrix) functions c. ,-U

If we take c(e) = to be the identity map on Rd (3.5) gives

T

G°,T(XO) = E[CiT(x°)1 + fo E[DOT I F]D°'Xidw".

Also, if we consider (3.5) for a second smooth bounded function g and take the expected

value of the product of each side, we see:

Ec(CoT (Xo))g(oT (Xo))] = Elc(0oT (xo))]Ejg( oT (Xo))I

*+E[Zj E~c DOT F, ]D XX D ' Elg DOT I F, 1ds]fo(3.6)

DEFINITION 3.2. The Malliavin matrix for the system (2.1) is

" Do,! Xi(u)X.(u)D,' du.M\j= ,UtJa 1,L

1=1

Note something resembling M 0 ,, occurs in (3.6).

* 5



4. HOMOGENEOUS CHAOS EXPANSIONS.

Consider an enlarged system with components C(l) = (C,D). The stochastic differ-

ential equation for (1) is, therefore, the system (2.1) and (2.3). The coefficients in (2.3)

are no longer bounded, but following Norris 141 a sequence of 'triangular' systems can be

considered and the results on stochastic flows still hold. We can, therefore, consider the

Jacobian D(O) of the system C() and a system C(2) - (C(1),D(l)). Proceeding in this

way (n) is a system with components (&(-1),D(n-1)). Write

C(1) a9C DoTc~l) = c ,

C(2) -O)c(1) etc.
o,T

Equation (3.4) can then be written

C(CO,T(XO)) E[c( o,T(XO)) + E[c(1) I F -I.D jdw. (4.1)

However, Elc(l)( l.) I F I can be represented, as in Section 3, as a stochastic integral

E[c(') I. ] = Ec(l)] + E .,)DlD ' ) ' sL ) d w j "'.

Here, X!1 ) is the coefficient vector field of w3 in the system defining C(). Substituting in

(4.1) ""

C(EO,T (X0 )) = E[c] + E[c( ' )] D-, X, dw

+ Z (fEI c ( 2 ) I F81 ,-0,,,X1)(s )w.1 ,8 )Xidw . ^

0Y

Now E[c( 2) I F, 1 can be expressed as a stochastic integral and the result substituted in

(4.2). Proceeding in this way we obtain the homogeneous chaos expansion of the random

variable C(Co,T(x 0 )). The repeated stochastic integrals do not involve c but only the

Jacobians D(k) and coefficients X(k).
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5. INTEGRATION BY PARTS.

LEMMA 5. 1. Suppose u = (ul ,... , u,,,) is a square integrable predictable process. Then

T =m fT1
E[c(O,T(xO))f uidw] =jE cc O,T(xo))Do,T J Do, Xi(s)ui(s)dsj.

i= 1

PROOF. Consider the representation (3.5) for C(OT (Xo)). Multiply by fT uidw'

and, using Fubini's theorem, take the expectation.

COROLLARY 5.2. Take ui(s) = (Do,8 Xi(s))*. Then
T .

Efc(Co (D jXj(s))dw] = E[c( O,T (Xo))Do,T Mo,Ti. (5.1)

REMARKS 5.3. Consider a product function h(Co,T (Xo)) =C(0,r (Xo))9(CO,T (Xo))

and apply Corollary 5.2 to h. Then

T
E[(cg)IT (XO)) (Do, X-) dw'] = El(c4g + cg )Do Mo]. (5.2)

"e.

We would like to take g = 1 Dj . in (5.2) so that we can obtain a bound for c . This "'-

can be done by considering, again following Norris 14], a hierarchy of stochastic systems

similar to, but different from, those introduced in Section 4.
This time write 0(0 )(w,s,t,X) = ,,t(x) for the flow defined by (2.1) and D,() =

D,,I(x) for its Jacobian. R(°) = f/ (D ,,,Xi(u))-du and M(= M, is the Malliavin

matrix defined in (3.2). Note that Mo,t can be considered as the predictable quadratic

variation of the tensor product of R(°) with its adjoint that is M (°) (R(0 ) 9 R(° ) ),,.-

Now consider an enlarged system 0(0) with components

(1) = (0(0) DO), R(O), M(O)).

The results of Norris 14] on stochastic flows allow us to discuss the Jacobian D(1) of ().

Suppose X(1) is the coefficient of w' in the system describing 0(), and write

R (l}  (D,-" X"(u)) dw'

M(1) =(0~) ®R(O)*),,t..
a,t

7
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Then define

0(2) =(00,), D(O), R(l), M(1))

and inductively, 0(n+1) - (O(n), D(-), R(-), M(n)). Write Vn for the gradient operator

in the components of 0(n). The following result is established like equation (5.2) by

considering the martingale representation (3.5) of the produce eg.

THEOREM 5.4. Suppose c is a bounded CO scalar function on Rd with bounded deriva-

tives. Let g be a Coo possibly vector, or matrix, valued function on the state space of ()

such that g(O(C)(0, T, z0)) and Vng((n)(0,T, x0)) are both in some LP(f). Then

E[c(0(°) (0,T))g (00(0(,T)) ®-o, .-.

E E[Vo c)(0(°) (0,T))g (O(n) (0,T)) Do,T MO,T] '

+ E[c(0(°) (0, T))(V.g)(O(") (0, T))D M" (5.3)0,T o,TJ(

COROLLARY 5.5. Gronwall's inequality shows that D -  is in all the L2(0) spaces, so

if M- is in some LP (fl) taking g(40(i) (0, T)) in
,T OT O,T

E[cf ( O,T (XO))] - E[c(CO,T ( -O))MoT1 Do, ® &,T T

- Elc( o ,T(xo) )(Vl1g )(Do ,T, Mo ,rDo ,T ""0,T"

Because c is bounded we, therefore, have the following result:

THEOREM 5.6. Suppose C0,T (Xo) is the solution of (2.1) and c is any smooth bounded

function with bounded derivatives. Then if M', is in some LP(fl)

IE(c(oT(XO))Il _< K sup Ic(z)1. (5.4)
zERd

ft

REMARKS 5.6. It is well known that (4.3) implies the random variable o,T (x0 ) has

a density d(z). To show the density d is smooth we wish to :stablish inequalities of the

-%'
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form

E" x)]1: K sup Ic(x)l.(.5
ZER 

p.

Here
ac, aa I C742d

09* a"' 2  d

An argument from Fourier analysis, (see 14]), shows that if (5.5) is true for all a with

Ial - al + + a d  n where n > d + 1 then the random variable CO,T (xO) has a density

d(x) which is in cn-d-I(Rd).

Apply Corollary 5.5 to cf rather than c so
.,"

Ejct 4 (Co,T (Xo))1 = E[cf (o,T (xo))M,, D- ® R0 ,T I

Ec ,TX)(l(,T, 0, 2l 0,M (5.6

OTo, o,,T "

(5.6)"

Consider the two terms on the right of (5.6) and write M MO,T, D = D 0 ,T , etc. Let

g1 ((1 -)M-D- ®RM 1'D- 1

and g((2)) -(V g)(D,M)D()M()M-D - 1.

Applying Theorem 5.4 to cg1 and cg2 :

E[c(o,T (zo))g(W(1)) 9 R] E[c(4,T (xo))M - D- ' ® R]"

(5.7) ".

and

E[c(Co,r (XO))92 (0(2)) ®RI = EI (Co,r (,o))(VI )(D, M)D(')M(l) I_.

"+ E[((O,T (0))(M392)g(03)) D M  ]

(5.8)

Using (5.7) and (5.8) the terms on the right of (5.6) can be replaced by terms involving c.

This procedure can be iterated using Theorem 5.4 and the following result established: *4

%s9
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THEOREM 5.7. Suppose M - 1 is in all spaces LP (fl), 1 < p < oo. Then the random

variable o,T (x0 ) has a smooth density.

The remaining questions concern the existence and integrability properties of M- 1o,T

These have been carefully studied; see Ikeda and Watanabe 12], or Norris 14], for example.

In fact M- 1 is in LP(fl) for all p, 1 < p < oo, if the following condition of H6rmander is0,T

satisfied:

CONDITION 5.8. The vector space V(xo) generated by the coefficient vector fields

Xi,...,X,, and the brackets [Xi,X], 0 ,j m, <Xj,[X,XkI, k 0 < i, ,k < m etc.,

evaluated at X0 E R d , is the whole of Rd.
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